Sensors
This paper applies the Chameleon Swarm Algorithm (CSA) and Snow Geese Algorithm (SGA) for optimizing the placement of electric vehicle charge stations (EVCSs), renewable energy sources (RESs), and shunt capacitors (SCs). The actual power ranges of the EVCSs of the Vinfast company in Vietnam are used to check the stabilization of the IEEE 85-node distribution power grid by considering four penetration levels of EVCSs, namely 25%, 50%, 75%, and 100%. All penetration levels of EVCSs violate the operating load voltage limits, and the grid cannot work for all the penetration levels. Different scenarios are performed to find the minimum RES penetration level and the most possible SC penetration level to satisfy the operating voltage limits. The use of only SCs cannot satisfy the voltage limits even for the 25% EVCS penetration level. The placement of RESs provides the capability to maintain voltage within the allowed range for 25% and 50% EVCS penetration but not for 75% and 100%. Using both RESs and SCs, the operating voltage limits are satisfied by using RESs with 1385 kW (about 30.44% of loads and EVCSs) and SCs with 2640 kVAr for the 75% EVCS penetration level and using RESs with 2010 kW (about 38.58% of loads and EVCSs) and SCs with 2640 kVAr (100% of loads) for the 100% EVCS penetration level. The study indicates that the installation of EVCSs should be calculated for stable operation of the distribution power grid, and the combination of both RESs and SCs can satisfy the maximum penetration level of EVCSs in the distribution power grids.