International Journal of Communication Systems
Climate change is one of the main challenges faced by the development of every country. For countries producing agricultural commodities, the climate affects the quantity and quality of products. Many methods have been proposed to keep track of climate. One traditional method is the weather station model, which indicates the temperature, wind speed, and direction and extent of cloud cover. However, this method of predicting climate change has low accuracy due to geographical variation, for example, mountainous or forested areas. Recently, a combination of wireless sensor networks (WSN) and machine learning (ML) has been considered for prediction with the Internet of Things (IoT), for instance, through a wireless body area network. For climate change prediction, we design and develop a control system that uses node sensors to collect data in sandhills and beaches, with data management conducted via a web application with three components. The first component is designed to collect data from the node sensors. The second component is mainly used to control the system through a web application. The third component uses linear regression in ML to analyze the data to predict weight and volume. The complete system has been tried and tested in real time on a 10-m2 area of a beach at Binh Thuan province, Vietnam, where sensor node data were wirelessly collected over a cloud using a web application. This enabled assessment of the current state of the land at a coastal sandy beach, as well as prediction of the risk level of desertification and natural disasters.