Structural and dynamic properties of lithium silicate liquid: A view from molecular dynamics simulation

Authors

Quynh T.D., Dung T.T., Dung M.V., Yen N.V., Vinh L.T.

Source title

Journal of Physics: Conference Series

Publication year
2021
Abstract

In this work, we have investigated the liquid lithium silicate by the method of molecular dynamics simulation (MD) using the Born-Mayer pairwise potentials under compression. The simulations have been carried out by systems including various pressure values from 5 to 30 GPa. The microstructure of lithium silicate was clarified through the thorough analysis of short-range order (SRO) and intermediate range order (IRO). The short-range order was investigated through factors such as pair radial distribution functions (PRDFs), coordination distributions, angular distributions. The results show that the structure of the system has a transformation from low-coordination to high-coordination under the influence of compression. Besides, the analysis of intermediate range order shows that the structure network in model consists of SiOx and LiOx units connected to others via an Oxygen atom. In the case for the intermediate range order, the fraction of OTy bond calculated under compression shows that their bonding angle and bond length are very little dependent on the pressure changes. Furthermore, the dynamics of liquid lithium silicates calculated through the diffusion coefficients of the atoms shows that there is a dependence of atomic mobility on pressure. The obtained results of simulations are in good agreement with previous experimental and simulated data.