Applied Sciences (Switzerland)
In this paper, an improved coyote optimization algorithm (ICOA) is developed for determining control parameters of transmission power networks to deal with an optimal reactive power dispatch (ORPD) problem. The performance of ICOA method is superior to its conventional coyote optimization algorithm (COA) thanks to modifications of two new solution generations of COA. COA uses a center solution to generate an update step size in the first solution generation and produced one new solution by using random factors to diversify the search space in the second solution generation. By tackling the drawbacks of COA, ICOA can reduce control parameters and computation steps, shorten execution time, and provide better results. ICOA is compared to its conventional COA for three standard IEEE systems of 30-, 57-, and 118-buses with continuous and discrete control variables. Moreover, three other algorithms such as water cycle algorithm (WCA), salp swarm algorithm (SSA), and sunflower optimization algorithm (SFOA) have been also implemented for further investigation of the real performance of the proposed method. All the applied methods are metaheuristic algorithms based on population and randomization. The result comparison from the test systems has indicated that ICOA can provide higher solution quality than other methods with reasonable execution time. Therefore, ICOA is a reliable tool for finding optimal solutions of the ORPD problem.