International Journal of Electrical and Computer Engineering
In this paper, the combined wind and thermal power plant systems are operated optimally to reduce the total fossil fuel cost (TFFC) of all thermal power plants and supply enough power energy to loads. The objective of reducing TFFC is implemented by using antlion algorithm (ALA), particle swarm optimization (PSO) and Cuckoo search algorithm (CSA). The best method is then determined based on the obtained TFFC from the three methods as dealing with two study cases. Two systems with eleven units including one wind power plant (WPP) and ten thermal power plants are optimally operated. The two systems have the same characteristic of MFSs but the valve loading effects (VLEs) on thermal power plants are only considered in the second system. The comparisons of TFFC from the two systems indicate that CSA is more powerful than ALA and PSO. Furthermore, CSA is also superior to the two methods in terms of faster search process. Consequently, CSA is a powerful method for the problem of optimal generation for wind-thermal power plant systems with consideration of MFSs from thermal power plants.