An Effective Reactive Power Compensation Method and a Modern Metaheuristic Algorithm for Loss Reduction in Distribution Power Networks


Nguyen T.T., Le K.H., Phan T.M., Duong M.Q.

Source title


Publication year

In this paper, a new method of reactive power compensation is proposed for reducing power loss of distribution power networks. The new method is the combination of local compensation at each load and distribution line compensation. In the method, local capacitors at each load are determined to increase power factor of load to an expected value first and then a number of capacitors are placed in distribution lines with two factors, location and capacity by using the three applied methods. Particle swarm optimization (PSO), parasitism predation algorithm (PPA), and tunicate swarm algorithm (TSA) are applied for the proposed method on four distribution systems with 15, 33, 69, and 85 buses. The comparisons of results with previous methods indicate that the three applied methods can reach higher loss reduction for all study cases. TSA can reach loss reduction more effectively than others by 19.4%, 0.5%, 7.9%, and 10.76% for the four distribution systems, respectively. The most important emphasis is that PSO, which was considered to be of low effectiveness in previous studies, can reach much better loss than approximately all previous methods thank to the proposed compensation method. PSO also reached better loss reduction than others by 18.97%, 0.4%, 7.73%, and 10.21%, respectively. Consequently, it is recommended that the proposed compensation method is useful for distribution systems in minimizing total power loss and TSA can be selected a new and powerful method for the problem.